
Pharmacoh,~,,y Biochemistry & Behavior, Vol. 17, pp. 583-587, 1982. Printed in the U.S.A.

A TRS-80-Based System for the Control
of Behavioral Experiments

M. W. EMMETT-OGLESBY, D. G. SPENCER, JR. A N D D. E. A R N O U L T

Department o f Pharmacolog\, Texas College o f Osteopathic Medicine, Fort Worth, TX 76107

Rece ived i l F e b r u a r y 1982

EMMETT-OGLESBY, M. W., D. G. SPENCER AND D. E. ARNOULT. A TRS-80-based system fi~r the control ~["
behavioral experiments. PHARMAC. BIOCHEM. BEHAV. 17(3) 583-587, 1982.--A TRS-80-based system is described
for controlling and recording events from operant chambers. The system features a TRS-80 microprocessor with 32 K
RAM, a floppy disk drive, an LVB optical interface, a printer, and a user-oriented program (Operant Protocol System,
OPS). The LVB interface system is capable of up to 128 independent input/output operations for each of up to 8 boxes. The
system uses assembly language routines for real-time control and event recording of up to 8 boxes simultaneously. BASIC
is used to obtain user input and deliver data output in an interactive fasion. Advantages include dependable hardware,
extensively documented and tested software, relative inexpensiveness, and standard-deviation-based variable schedules.

TRS-80 microcomputer Operant research Behavioral pharmacology Assembly language BASlC
Behavior

THE increasing power and flexibility of microcomputers,
coupled with their rapidly declining costs, has made them a
progressively more attractive alternative to modular elec-
tromechanical and minicomputer control systems for behav-
ioral pharmacology laboratories. Although inexpensive, mic-
roprocessors are flexible, allowing the user to perform sev-
eral types of experiments; indeed, they can be adapted to
uses such as data analysis or word-processing when not
engaged in laboratory functions. Finally, they permit the ac-
quisition and analysis of data which are beyond the capacity
of modular equipment. However, microcomputers have limi-
tations; most notably, they must be programmed. A program
designed to execute behavioral experiments should be as
general purpose as possible and feature easily understood
input and output instructions. Moreover, the program should
execute rapidly enough to insure the detection of every re-
sponse made in the operant chambers. This latter constraint
necessitates programming in assembly language, which is
difficult and tedious. Software considerations aside, mic-
rocomputers are in general poorly equipped to directly con-
trol external equipment; some type of interfacing device is
necessary. An interface should be selected that is compata-
ble with the particular microprocessor in use, can handle
real-time jobs such as switch debouncing of inputs and
pulse duration setting for outputs, and can conduct a large
number of input/output operations.

To date, microcomputer control systems have been re-
ported in which a mixture of higher level languages, such as
BASIC, and assembly language are used for real-time exper-
imental control [1, 2, 4, 5]. The use of higher level languages
not only slows program execution, it also makes it very dif-

ficult to calculate program execution time. Thus, no esti-
mates are provided of the time it takes these programs to
execute all functions under the worst possible case, thereby
making estimates of the maximum number of operant cham-
bers that can be controlled by a single system difficult. The
Operant Protocol System (OPS) described in this paper was
designed to overcome these difficulties in two ways: (1) OPS
is specifically designed to process up to 8 chambers, and (2)
real-time experimental control and data recording is done
solely in assembly language. TRS-80 provides precise times
of execution for all assembly language commands, and these
data have been used to calculate OPS running time.

Although OPS uses assembly language for real-time
execution, BASIC has been used to write programs that
interact with the experimenter before and after the experi-
mental session in order to receive the experimental param-
eters (session time, operant schedule, subject number, etc.)
and to deliver the session data, respectively. These programs
are interactive and require no programming knowledge to
perform experiments with OPS. BASIC and assembly-
language programming ability is necessary only if modifica-
tion of the OPS software is desired, and for this purpose,
BASIC and assembly language routines have been exten-
sively documented.

Hardware

A TRS-80 Model III microcomputer (Radio Shack) was
selected because extensive software is currently available,
thereby reducing time spent in user program development.
Minimum requirements are 32 K random access memory

JSupported in part by ADAMHA Grant l RO 3 MH34607 and Faculty Research Grant 34940.

Copyr igh t o 1982 A N K H O In t e r na t i ona l Inc.--0091-3057/82/090583-05503.00/0

584 EMMETT-OGLESBY ET AL.

(RAM) and one floppy disk drive. Using TRS-80 bus exten-
sions, the computer 's input and output ports are connected
to an optically isolated LVB interface (Med Associates, Inc.)
which safely separates the low-voltage (5 V DC) computer
line from the higher voltage (28 V DC) working lines. The
LVB interface comes as a chassis which can hold up to 6
cards. Each slot can hold either an input or an output card,
and each card either inputs or outputs 1 byte (8 bits, 1 bit per
box) of data simultaneously. OPS uses a card for each differ-
ent type of event in up to 8 chambers, eg., one input card
monitors all left levers in the 8 operant chambers; similarly,
one output card controls all houselights in the 8 chambers.
The LVB chassis can be connected in series via bus exten-
ders and because the TRS-80 uses 7 bits of an 8-bit byte to
address these cards, up to 128 cards could be used. On the
input side, the LVB interface pulse-forms (eliminates clatter)
switch closures and holds all input data in a buffer which is
cleared on reading. On the output side, the LVB can be set to
act as a transparent interface (output line high or low until
the logic state is modified by the processor) or a controlling
interface (output duration controlled by an adjustable one-
shot). These features permit maximum flexibility in output
configuration to solenoid devices, lights and speakers. If
hard copy of data is desired, the TRS-80 can also be con-
nected to a printer via a parallel interface port, and OPS will
control data printing. In order to run 8 boxes, the present
cost of microcomputer with 32K RAM, 1 disk drive, LVB
interface (with 6 cards), inexpensive printer and OPS
software is approximately $4,500 or less. Since each addi-
tional LVB card costs an average of $200, independent con-
trol of additional input or output devices is quite economical,
assuming the user has the capability to program in BASIC
and assembly language.

Software

OPS is an interactive user-oriented package that requires
no programming knowledge to execute the operant
schedules described below. Because the TRS-80 has an 8-bit
word size, OPS is designed to process data from all 8 boxes
in parallel, where each bit in a byte represents one box.
Thus, lever responses are read and output is updated for all 8
boxes simultaneously. The OPS software currently allows
for up to 3 manipulanda inputs; outputs for houselights,
feeders and panel lights; and the following operant
schedules: fixed and variable ratio (FR and VR), fixed and
variable interval (FI and VI), fixed and variable time (i.e.,
response-independent delivery of reinforcement; FT and
VT), differential reinforcement of low and high rates (DRL
and DRH), and extinction (EXT). In addition, a drug dis-
crimination testing procedure is available, in which two lev-
ers are on a concurrent FR 10 schedule. Any of up to three
manipulanda can be defined as correct (reinforceable) for
any of the simple schedules.

OPS software consists of BASIC and assembly language
routines constructed using technqiues of structured pro-
gramming [6]. This method emphasizes subroutine-oriented,
task-specific programming, resulting in modular program
segments for users having assembly language programming
skills and wishing to modify OPS. For this purpose, BASIC
and assembly language routines have been extensively
documented. All BASIC and assembly language programs
are loaded into RAM from disk, providing minimal delay in
program initiation. The program flow during operation is as-

signed to three components: user input, real-time process-
ing, and data output. These components are executed se-
quentially after an initial BASIC load and run command.
User input and data output are performed entirely through
BASIC routines, and real-time execution is performed solely
through assembly language routines. The flow of control be-
tween BASIC and assembly language routines is
schematized in Fig. 1.

User input is initiated with disk loading and running of a
BASIC program which prompts the user to supply the infor-
mation necessary to perform the experiment. As shown by
the prompts in Fig. 2, eight boxes can be run under the same
or different schedules. Even when data must be entered for
each box individually, typical set-up time is not more than 3
minutes. To facilitate input further, we are developing a sys-
tem in which user-input data can be stored to disk: thus, all
future experiments employing the same parameters could be
loaded in a few seconds.

Upon receiving the experimental parameters, the BASIC
program inserts the parameters into their appropriate RAM
locations, loads the assembly language real-time processing
component, and then erases itself from memory (providing
3K additional RAM for data storage). The real-time process-
ing component consists of two assembly language programs
which are called from BASIC. The first program runs a tes!
routine which prompts the user to test all response man-
ipulanda and terminates itself upon delivering reinforcement
to all chambers. The counters are then reinitialized and the
user is prompted to start the session by pressing " S . " Upon
"'S'" input, the session is started, a chamber-monitoring dis-
play is set up on the CRT and the main assembly language
routine which runs the actual experimental session is called.
This program uses the internal TRS-80 30 Hz clock to initiate
execution every 100 msec. On each execution, inputs are
polled from all chambers, outputs delivered, and data proc-
essed in 15.5 msec at most. This worst case execution figure
was calculated for the following conditions: 8 chambers on a
VI schedule; all chambers generate a response on this
execution, all chambers receive reinforcement, schedule
values are recalculated for all chambers, data are processed
and stored, and clocks are updated. Therefore, although the
program currently uses a 100 msec interrupt, it could be
modified to make full use of the 30 Hz clock and interrupt
every 33.3 msec even with all 8 chambers running concur-
rently. This modification would make OPS easily compatible
with research subjects such as pigeons, which are capable ol
responding in excess of ten times per second. This labora-
tory has been using OPS to run two sets of 8 operant cham-
bers on drug discrimination paradigms since December,
1981. Although the majority of our experience with OPS has
been on FR schedules, all operant schedules have been fully
tested and debugged.

An attractive feature of OPS is the capability of user-set
standard deviations for variable ratio, interval, and lime
schedules. During user-supplied parameter inputs, mean
schedule values and standard deviations are obtained. Dur-
ing the experimental session, an assembly language sub-
routine multiples this standard deviation by a Z-table fre-
quency distribution to obtain random numbers used to offset
the mean schedule value. For example, if a user specified a
variable interval 20-second schedule with a standard devia-
tion of 5, two-thirds of all the schedule values would fall
between 15 and 25 seconds in half-second bins. Although a
table look up is used to calculate the offset for the mean
schedule value, the decision to add or subtract this offset is

M I C R O P R O C E S S O R A N D B E H A V I O R A L E X P E R I M E N T S 585

OPS

i) Calls assembly program to clear RAM where assembly routines and
parameters will be stored:

[CI2AB i: Clear RAM. l

2) Interacts with user to obtain and store session parameters.
3) Loads real-time assembly program that runs the sessions.
4) Calls assembly program to run a chamber test session:

TEST: Test box inputs and outputs.

OPS2

I) Calls assembly program to clear excess BASIC and test session
data frcm RAM:

I CLEAR 2: Clears RAM.

2) Calls real-time assembly program to run the experimental session:

OPS/(Iv~

START

ENDCHK
BEGIN

INPUT

RSORT

CLOSER

ZTOSR

OUTPUT
RESET

SCREEN
NOTGO

RSRINC
SRMV

DDTP

ENDBLK

Real-time session control. Subroutines
listed below are called sequentially.

Initializes I/0 ports.
Sets and updates all timers from 30Hz clock.
Checks each box for end of session.
Checks each box for time to start session;
turns on house lights and activates I/0.
Reads bytes from external I/0 buffer (LVB
card) .
Sorts responses on each lever into correct
and incorrect responses for all boxes.
Decrements counters controlling schedule
values on correct response or time.
When schedule value counters reach zero, bits
in the reinforcement flag are set for each box.
Delivers reinforcement and other stimuli.
Resets schedule value co, inters after they have
hit zero.
Updates the box-monitoring screen display.
Records latency to first session response for
all boxes.
Increments data counters for all boxes.
Separately stores data gathered befored first
re inforce_ment.
Separately processes boxes on drug discrimina-
tion test program.
Indicates session end on screen for each box.

DATOUT

Outputs data to screen and optionally to printer. I

FIG. 1. Program descriptions and flow of control for experimental set-up and execution. BASIC program and sequential
functions are schematized in the outer boxes and assembly programs they call are shown in the inner boxes. Once an
assembly routine is entered, the computer does not return to BASIC until the assembly execution is completed. When the
user wishes to run a sess ion, OPS is loaded, and the flow of program-to-program transfer of control is carried out
automatically until the end of D A T O U T is reached. If the user answers " Y" to the query, " Do you wish to run more
animals?" OPS is automatically reloaded and new sess ion parameters can be entered.

586 E M M E T T - O G L E S B Y ET Air

TURN ON LVB
(interface is turned on by user)

~qTER NAME IN 16 CHARACTERS OR LESS.
DAVID SPENCER

NgTE~R BRIEF DESCRIPTION OF EXPER/3~NT, NO MORE THAN ONE LINE.
ADII~OSINE DRUG DISCRIMINATION

IS THE SESSION TIME THE SAME FOR ALL BOXES (Y OR N) ?
N

DO YOU WANT THE BOXES TO START SIMULTANEOUSLY (Y OR N) ?
N

DO YOU WANT THE DELAY BETWEI~ STARTS TO BE OTHER THAN i0 SEC (Y OR N) ?
Y

DELAY B ~ STARTS (IN SEC) = ?
15

ENTER THE NUMBER OF BOXES TO BE RUN (1-8) ?
8

ARE THE ANIMALS ON THE SAME PROGRAM (Y OR N) ?
N

PROGRAMS ARE : FR=I, FI=2, FT-=-3, VR=-4, VI=5, VT=6, DRL=7, DRH=8, EXT=9, DDT=I0.
THE SCHEDULE FOR BOX i : ?

1
RAT IN BOX 1 IS NLNBER?

23
FOR BOX i, THE SESSION TIME IN MIN : ?

i0
INDICATE CORREC~ LEVER(S) : LEFT, CENTER, RIGHT (Y OR N) IN BOX i?

Y,N,N
RESPONSE RATIO IN BOX 1 = ?

i0
SHOULD THE SESSION H~D UPON NUMBER OF R E I N F O ~ IN BOX 1 (Y OR N) ?

Y
REINFORCI941'INT NUMBER, BOX i?

5O
PANEL LIGHTS (Y OR N) ?

N
PROGRAMS ARE : FR=I, FI=2, FT:3, VR=4, VI=5, VT=6, DRI_~7, DRH=8, EXT=9, DDT=I0.
THE SCHEDULE FOR BOX 2 : ?

4
RAT IN BOX 2 IS NLMBER?

49

FIG. 2. Sample interaction between user and OPS in the BASIC experimental information input stage. For clarity, user
replies to prompts are indented; computer prompts are not. As shown above; schedules, schedule values, and session
durations can be declared individually or collectively by the user, but subject numbers and correct/incorrect levers are
always specified box-by-box. All input parameters are free to vary between boxes,

d e t e r m i n e d by the odd or even s ta tus of the 30 Hz clock~ an
essent ia l ly r a n d o m even t with respec t to the t ime at which a
r e s p o n s e is r ece ived . Thus , even if only one box is run on a
var iable schedu le , a different pa t t e rn of in te rva ls or ra t ios is
ob t a ined each sess ion . Execu t ion t ime for this segment of
the p rog ram is less than on o the r s y s t em s since a s sembly
r a the r than h igher level languages is used for s t anda rd devia-
t ion ca lcu la t ions . Ac tua l t ime to reca lcu la te 8 VI-20-second
schedules and store them in appropr ia te R A M locat ions is 4.8
msec .

W h e n the sess ion has t e rmina ted for all boxes , the as-
sembly language p rogram re tu rns to the call ing B A S I C pro-
g ram which loads a B A S I C da ta ou tpu t p rogram from disk.

The da ta ou tpu t p rogram disp lays r e sponse and re inforce-
men t da ta to the CRT and con t ro l s print ing. This rout ine also
includes op t ions for ob ta in ing a measu re of the la tency to
first r e s p o n s e f rom the start of the sess ion and a s u m m a r y of
r e sponses on cor rec t and incor rec t levers until the first rein-
f o r c e m e n t was ob ta ined . The la t ter fea ture is par t icular ly
useful for d rug d i sc r imina t ion expe r imen t s , in which only
one of two m a n i p u l a n d a will gene ra t e r e i n f o r c e m e n t and the
cor rec t m a n i p u l a n d u m is de t e rmined by the in ject ion condi-
t ions [31. Final ly , subrou t ines al lowing for b r e a k d o w n s of
i n t e r - r e sponse t imes, pos t - r e in fo rcemen t pause t imes, post-
r e in fo rcemen t r e sponse f requenc ies , and t empora l ana lyses
of r e sponse and r e in fo rcemen t da ta are be ing deve loped . The

M I C R O P R O C E S S O R A N D B E H A V I O R A L E X P E R I M E N T S 587

last feature should be useful for monitor ing the t ime course
of psychoac t ive drug effects.

In summary , OPS includes the fol lowing features: An in-
expens ive , reliable hardware sys tem and software package
to control up to 8 operant chambers ; the ability to program
all chambers for different re inforcement schedules , starting

t imes, and ending times; the capabili ty of specifying the
range of values to be used in variable schedules; and exten-
sive documenta t ion of all BASIC and assembly language
subrout ines to facilitate further adaption to individual needs.
For more information, write to the first author.

REFERENCES

1. Carroll, M. E., P. A. Santi and R. L. Rudell. A microcomputer
system for the control of behavioral experiments. Pharmac.
Biochem. Behav. 14: 415-417, 1981.

2. Dillon, R. F., B. Millman, J. W. Tombough, W. R. Ferguson and
W. R. Bezanson. A microcomputer-controlled laboratory:
Hardware. Behav. Res. Meth. lnstrum. 11: 293-300, 1979.

3. Lal, H. and G. T. Shearman. lnteroceptive discriminative stimuli
in the development of CNS drugs and a case of an animal model
of anxiety. An, Rep. Mednl Chem. 15: 51-58, 1980.

4. Thompson, G. C. Behavioral programming with the APPLE II
computer. Behav. Res. Meth. lnsturm. 11: 585-588, 1979.

5. Tombough, J. W., R. F. Dillon, B. Miltman and W. R. Bezanson.
A microcomputer-controlled laboratory: Software. Behav. Res.
Meth. Insturrn. l l : 301-310, 1979.

6. Yourdan, E. Technqiues of Program Structure and Design.
Englewood Cliffs, N J: Prentice-Hall, Inc., 1975.

